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1. Introduction

The instability of a fluid layer flowing down a vertical

cylinder has attracted many researchers due to its im-

portant applications in many industrial processes. Such

processes mainly include: coating surface, absorber and

reactor. For coating surface process, the liquid film

should be stabilized to maintain smooth and uniform

film coating. On the contrary, for absorber and reactor,

the liquid film should be destabilized to improve heat and

mass transfer across the free surface. Based on the above

reasons, the suitable flow control strategy should be de-

veloped to delay or enhance the instability of liquid layer.

Goren [1] studied the linear stability of external and

internal films with respect to axisymmetric disturbances.

However, the study was severely limited by assuming the

zero velocity of basic flow. He found the liquid film is

unstable for small wave numbers, but stable for large

ones. Lin and Liu [2] obtained an evolution equation by

applying the small wave number and thin film approxi-

mations. An explicit condition under which a film of a

constant thickness can be attained was given in terms of

relevant physical parameters. Their results were in a good

agreement with the known experimental results. Krantz

and Zollars [3] started from the Orr–Sommerfeld equa-

tion and showed the results for small wave number and

low Reynolds number. The valid domain of their as-

ymptotic solution was established. Solorio and Sen [4]

calculated the linear isothermal stability with fully de-

veloped base flow by direct numerical computation. Their

results showed that the cylindrical falling film is unstable

for all Reynolds numbers, Weber numbers and radius

ratios. All above research is in a frame of linear stability

theory. For the non-linear case, which is out of the scope

of present study, investigationswere performed by Shlang

and Sivashinsky [5], Trifonov [6] and Hung et al. [7].

Numerous studies showed that the instability of a

flow can be greatly delayed or enhanced by flow control

technology. Now this technology has been widely ap-

plied in both research and engineering problems. Thus,

Gad-el-Hak [8] pointed out that flow control is perhaps

more hotly pursued by scientists and engineers than any

other areas of fluid mechanics. Many flow control

strategies such as heating or cooling, suction or injec-

tion, flexible surface, compliant coating and large-eddy

breaking have been developed recently, see the review

papers of Morkovin and Reshotko [9] and Gad-el-Hak

[8] for details.

An efficient active feedback control loop by periodi-

cal heating was first performed by Liepmann et al. [10].

In their boundary layer experiments in water, two heat-

ing elements are used: one for exciting the T–S wave and

the other for cancelling the T–S wave. They found that

the localized periodical surface heating can either re-

duce or enhance the overall level of flow field fluctua-

tions. In addition, by measuring the upstream wall shear

stress of the controlling surface, they were able to syn-

thesize a signal to drive the cancellation disturbance at

the controlling surface. A feedback control technique

was established. Furthermore, they demonstrated that

the energy cost for controlling flow can be greatly re-

duced by applying this technique.

Recently, Bau [11] presented a non-intrusive feed-

back control strategy to control the Marangoni–B�eenard
convection of an infinite fluid layer, where a sensor de-

tects the deviation of the free surface temperature from

its conductive value and a actuator modifies the heated

wall temperature according to a linear rule of the sensor

output. He showed the Marangoni–B�eenard convec-

tion can be controlled powerfully. In this note, another
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non-intrusive feedback control strategy is presented. The

results show that this control strategy can greatly sta-

bilize or destabilize a fluid layer flowing down a vertical

cylinder.

2. Linear stability equations

The system whose stability will be controlled is a fully

developed fluid layer flowing down a vertical cylinder as

shown in Fig. 1. All fluid properties (density, thermal

conductivity and specific heat) are assumed to be con-

stant except the temperature-dependent viscosity. This is

a very good approximation for some liquids like water.

Cylindrical coordinates are used here. z and r are in the

vertical downward and in the radial direction, respec-

tively. The unperturbed thickness of fluid layer is h� and
the radius of cylinder is R�. The gravitational accelera-

tion g!�
is in the z-direction.

In linear stability theory, a quantity a� (stream

function w�, temperature T � and viscosity l�) is de-

composed into a basic (mean) value �aa� and a superim-
posed disturbance ~aa� as

a� ¼ �aa� þ ~aa�: ð1Þ

Then we non-dimensionalize all quantity and control

equations by the film thickness h�, the basic velocity at

Nomenclature

a general quantity

âa shape function of a

Bi Biot number
H �h�

j�
ĉc complex eigenvalue

ci imaginary part of ĉc
cp specific heat at constant pressure

cr phase velocity

f controller function

g gravity acceleration constant

h� unperturbed fluid thickness

H heat transfer coefficient

K controller gain

M number of polynomials for ŵw
N number of polynomials for bTT
Pr Prandlt number

�ll�
wc

�
p

j�

Re Reynolds number
q��ww�

sh
�

�ll�
wt time

T temperaturebTT temperature shape function

w streamwise velocity

We Weber number
r�

q�h��ww�2
s

r; h; z Cylindrical coordinates

Greek symbols

a wave number

b dimensionless radius
R�

h�

c the rate of radius
b

b þ 1
g disturbed free surface displacement

H controller phase angle

j thermal conductivity

l viscosity

q density

r surface tension

w stream function

ŵw shape function of stream function

Superscripts

� dimensional quantity

– mean value

� disturbance quantity

s optimal controller phase angle for stabiliz-

ing

d optimal controller phase angle for destabi-

lizing

Subscripts

s free surface

w wall

Fig. 1. Geometry of the fluid layer falling down a cylinder.
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free surface �ww�
s , the basic temperature at the cylinder

wall T
�
w and the liquid density q�. The quantity with � is

dimensional.

In this note, we shall describe a non-intrusive feed-

back control strategy in order to stabilize or destabi-

lize a fluid layer flowing down a vertical cylinder. In this

method, an optical sensor detects the displacement of

disturbed free surface and a actuator modifies the

wall temperature of the cylinder according to a linear

function of the optical sensor output. In the structure

of linear stability, the controlled temperature fluctua-

tion introduced by the actuator at the cylinder wall

should not have any influences on the constant basic

temperature field. The temperature-dependent viscosity

is expressed as l ¼ �llðT Þ þ ~llðT ; bTT Þ and the basic dimen-
sionless temperature and viscosity are

T ¼ T
�

T
�
w

¼ 1; �llðT Þ ¼ �ll�

�ll�
w

¼ 1; ð2Þ

where the T
�
w and �ll�

w are the basic temperature and

viscosity at the cylinder wall. The basic dimensionless

flow velocity is

�wwðrÞ ¼
c2 þ 2 ln r

b � r2

ðbþ1Þ2

c2 � 2 ln c � 1 ; ð3Þ

where b ¼ R�=h� is the dimensionless radius and c ¼
b=ðb þ 1Þ is the ratio of the cylinder radius divided by
the fluid layer curvature radius, see Davalos-Orozco

and You [12].

For the linear stability studied here, we can take a

linear approximation for viscosity fluctuation as

~llðT ; eTT Þ ¼ l1ðT ÞeTT : ð4Þ

The disturbance in Eq. (1) is assumed to be axisym-

metic as:

~aa ¼ âaðrÞ exp½iaðz� ĉctÞ
 þ c:c:; ð5Þ

where a is the wave number and ĉc ¼ cr þ ici is a complex
number, whose real part cr is the phase velocity and
the imaginary part ci multiplied by the wave number
xi ¼ aci is the growth rate. When xi > 0, the flow is

unstable.

Substituting Eqs. (1)–(5) into the Navier–Stokes

equations (for temperature-dependent viscosity) and

thermal energy equation, the linear differential equations

for ŵw rð Þ and bTT rð Þ are deduced with D2 ¼ r
o

or
1

r
o

or

� �
½ð�ww� ĉcÞðD2 � a2Þ � D2�ww
ŵw þ i

aRe
D2
�

� a2
�2

ŵw

¼ i

aRe
ðD2
"

þ a2Þ r
o�ww
or

 !
þ 2rD2�ww

 
þ 4 o�ww

or

!
o

or

þ r
o�ww
or

D2
#
ðl1bTT Þ; ð6Þ

ð�ww
�

� ĉcÞ þ i

aRePr
D2
�

þ 2
r
o

or
� a2

��bTT ¼ 0: ð7Þ

The no-slip boundary conditions at the cylinder wall

r ¼ b are

ŵw ¼ oŵw
or

¼ 0: ð8Þ

The boundary conditions of tangential stress, normal

stress and heat balances at the free surface r ¼ b þ 1
with constant surface tension are

a2ŵw þ o2ŵw
or2

� 1
r
oŵw
or

� G
ŵw

ĉc� 1� l1
o�ww
or

rbTT ¼ 0; ð9Þ

aðĉc� 1Þ oŵw
or

þ 1

iRe
o3ŵw
or3

"
� 1

r
o2ŵw
or2

� a2
�

� 1

r2

�
oŵw
or

#

� aWe ŵw
ĉc� 1 a2

�
� 1

r2

�
þ 2ia

2

Re
oŵw
or

 
� ŵw

r

!

� l1bTT
iRe

r
o2�ww
or2

 
þ o�ww

or

!
¼ 0; ð10Þ

obTT
or

¼ �Bi bTT ; ð11Þ

where Bi, Pr, Re and We are Biot number, Prandtl

number, Reynolds number and Weber number, respec-

tively, and G¼ 4ð1� cÞ2=ðc2 � 2 ln c� 1Þ. The kinematic
boundary condition has been used in the boundary

conditions at r ¼ bþ 1.
The left boundary condition for the temperature

disturbance at the cylinder wall is assumed to be freely

adjustable. The actual temperature will be prescribed

according to our feedback control strategy.

3. Active feedback control strategy

Our control strategy is realized in the following way.

We suppose to apply an optical sensor to measure the

perturbed free surface g�. It is possible to get g� (from

the tangent direction) because we only consider axi-

symmetric disturbances and the g� value does not de-

pend on the coordinate h. Then, from the difference

between the measured disturbed free surface g� and the

known unperturbed free surface h�, the disturbance
amplitude of free surface ĝg can be determined. The

cylinder wall temperature is adjusted by the actuator

according to a function of ĝg which is written as f ðĝgÞ.
Now our feedback control loop is established. f is called

controller function. For a simplified case, we choose a

linear function as the controller function here. Other

controller functions can be adopted in the same way.

Then the controlled temperature fluctuation at r ¼ b is
expressed as
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bTT ¼ K eiHĝg ¼ K eiH
ŵwjr¼bþ1

ðb þ 1Þð1� ĉcÞ ; ð12Þ

where K is the controller gain. H is the controller phase

angle which is the difference between the phase angle of

the input temperature fluctuation at the cylinder wall

(the output phase angle of the actuator) and that of the

measured free surface displacement (the output phase

angle of the optical sensor). The boundary condition

(12) is our feedback control loop. It is adopted in all

following calculations.

4. Description of numerical method

The system of Eqs. (6) and (7) with their correspond-

ing boundary conditions (8)–(12) is solved by the

Chebychev collocation method. In this method, ŵw and bTT
are expanded in Chebyshev polynomials as

ŵwðzÞ ¼
XM
n¼0

cnTnðzÞ; bTT ðzÞ ¼XN
n¼0

dnTnðzÞ; ð13Þ

here TnðzÞ ¼ cosðn cos�1 zÞ is the Chebyshev polynomial
of order n.

Substituting Eq. (13) into Eqs. (6) and (7), the re-

sulting algebraic equations are

½L1ðT0ðzÞÞ; L1ðT1ðzÞÞ; . . . ; L1ðTM ðzÞÞ
½c0; c1; . . . ; cM 
T

þ ½L2ðT0ðzÞÞ; L2ðT1ðzÞÞ; . . . ; L2ðTN ðzÞÞ
½d0; d1; . . . ; dN 
T

¼ 0; ð14Þ

½L3ðT0ðzÞÞ; L3ðT1ðzÞÞ; . . . ; L3ðTN ðzÞÞ
½d0; d1; . . . ; dN 
T ¼ 0:
ð15Þ

Here L1, L2 and L3 are the differential operators. By
applying them, Eqs. (6) and (7) are written as L1ŵw þ
L2bTT ¼ 0 and L3bTT ¼ 0, respectively.

M and N can be any numbers if the desired numerical

accuracy of the solutions of Eqs. (14) and (15) with their

boundary conditions can be reached. For a better ap-

proximation and optimal CPU time, the same number of

collocation points should be used to solve Eqs. (14) and

(15). Then we have the relation M ¼ N þ 2. Eqs. (14)
and (15) are assumed to satisfy Eqs. (6) and (7) at the

carefully chosen collocation points zj (j ¼ 1; 2; . . . ;
M þ 1�Mb, Mb is the number of boundary conditions

of Eq. (6) and Mb ¼ 4 here). Eqs. (14) and (15) at all
zj provide 2ðM þ 1�MbÞ algebraic equations. Their
corresponding boundary conditions (8)–(10) and (11)

and (12) provide Mb ¼ 4 and Nb ¼ 2 algebraic equa-
tions, respectively. The total algebraic equations are

2ðM þ 1 � MbÞ þ Mb þ Nb ¼ 2M ¼ ðM þ 1Þ þ ðN þ 1Þ.
Then, the ðM þ 1Þ þ ðN þ 1Þ unknowns (i.e. the coeffi-
cients cn (n ¼ 0; 1; . . . ;M) and dn (n ¼ 0; 1; . . . ;N )) in Eq.
(13) can be determined.

The choice of the collocation points can be arbitrary,

but for a better approximation of bTT ðzÞ with fewer col-
location points, it is better to choose zj ¼ cos hj and

hj ¼ jp=ðM �Mb þ 2Þ. The above arrangement of the
collocation points shows that more points are put near

the cylinder wall and the free surface boundary and

fewer points are put around the middle of the fluid layer.

5. Results and discussion

For all results presented here, M ¼ 34 is appropriate.
The results of Solorio and Sen [4] are recalculated by our

computer routine. Our results are in good agreement

with those of Solorio and Sen [4] (see Table 1 for de-

tails).

The controller phase angle H is the only parameter

which shows our active control strategy is to delay or to

enhance the instability of fluid layer. For stabilizing the

fluid layer, two quadrants range of controller phase

angle can be used and there is one optimal angle which

can stabilize the fluid layer maximally under keeping the

other parameters unchanged. We call this optimal angle

the optimal controller phase angle for stabilizing, writ-

ten as Hs here. The dependence of the Hs value on the

system parameters Re, Pr, We, Bi, c, a, l1 and K is

studied. It is found that the Hs value depends weakly on

all above parameters except the Reynolds number Re. In

fact, the Hs value depends weakly on Re too, but its

dependence on Re is stronger than its dependence on the

other parameters. For destabilizing the fluid layer, we

choose Hd¼Hs � p. Here Hd is the optimal controller

phase angle for destabilizing the fluid layer.

Four typical cases are shown in Figs. 2–5. In all fig-

ures, the continuous line is corresponding to the natural

case K ¼ 0. Fig. 2 shows the growth rate of disturbance
xi against wave number a. For the natural case (K ¼ 0),
the disturbances with wave numbers less than (about)

0.4 are unstable. After the feedback control K ¼ 10
is performed, the growth rate of the most unstable

disturbance is greatly reduced. But the most unstable

disturbance is not fully stabilized at this time. For the

controlled case K ¼ 20, the growth rate of all wave
number disturbance is negative and the fluid layer

becomes stable. Figs. 3 and 5 show the similar phenom-

enon.

Table 1

Eigenvalue ĉc for different a, Re ¼ 1, We ¼ 1 and c ¼ 0:5
a Solorio and Sen [4] Our results

0.4 1:706106þ 0:118957i 1:706106þ 0:118957i
0.1 1:970564þ 0:070926i 1:970564þ 0:070926i
0.01 1:999700þ 0:007641i 1:999696þ 0:007641i
0.005 1:999923þ 0:003823i 1:999923þ 0:003822i
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Fig. 4 shows the fluid layer becomes stable until

the controller gain is about 600. It is found that the

growth rate of the disturbance with small wave num-

ber is greatly reduced after applying our feedback con-

trol. This phenomenon does not appear in the other

cases shown here. Further study shows it only appears

when the rate of radius c is small enough.
From the Figs. 2–5, it is found that all unstable dis-

turbance is well suppressed by applying our active feed-

back control strategy. It is concluded that our feedback

control strategy is very powerful in stabilizing the fluid

layer flowing down a cylinder if the controller phase

angle and the controller gain are suitably chosen.

Besides stabilizing the fluid layer, Fig. 5 also shows

the result of destabilizing the fluid layer. The control

is realized by choosing Hd ¼ Hs � p ¼ 1:2. The result
shows that our active feedback control strategy is also

powerful to destabilize the fluid layer.

Eq. (12) shows the relation between the amplitude of

the input temperature fluctuation on the cylinder wall

and the amplitude of the detected free surface deforma-

tion. We recall the dimensional form of Eq. (12), that is

bTT �

T
�
w

¼ K eiH
ĝg�

h�
¼ K eiH

ð1� cÞĝg�

cR� : ð16Þ

Fig. 2. The growth rate of disturbance xi against wave number

a. The continuous line, the dashed line and the large dashed line
are corresponding to K ¼ 0, K ¼ 10 and K ¼ 20, respectively.
Re ¼ 1, Pr ¼ We ¼ Bi ¼ 10, c ¼ 0:8, l1 ¼ �0:02 and Hs ¼ 4:4.

Fig. 3. The growth rate of disturbance xi against wave number

a. The continuous line, the dashed line and the large dashed line
are corresponding to K ¼ 0, K ¼ 50 and K ¼ 110, respectively.
Re ¼ Pr ¼ We ¼ Bi ¼ 10, c ¼ 0:8, l1 ¼ �0:02 and Hs ¼ 3:5.

Fig. 4. The growth rate of disturbance xi against wave number

a. The continuous line, the dashed line and the large dashed line
are corresponding to K ¼ 0, K ¼ 300 and K ¼ 600, respectively.
Re ¼ Pr ¼ We ¼ Bi ¼ 10, c ¼ 0:5, l1 ¼ �0:02 and Hs ¼ 3:9.

Fig. 5. The growth rate of disturbance xi against wave number

a. Re ¼ We ¼ 1, Pr ¼ Bi ¼ 10, c ¼ 0:99 and l1 ¼ �0:02. For
stabilizing case (Hs ¼ 4:3), the continuous line, the dashed line
and the large dashed line are corresponding to K ¼ 0, K ¼ 10
and K ¼ 20, respectively. For destabilizing case (Hd ¼ 1:2), the
dash-dotted-curve is corresponding to K ¼ 10.
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If we only concern the module of the amplitude of the

input temperature fluctuation, then

jbTT �j ¼ KT
�
w

ð1� cÞjĝg�j
cR� : ð17Þ

The above relation shows the module of the amplitude

of the input temperature fluctuation depends on K, T
�
w,

R�, c and jĝg�j. For c ¼ 0:5, R� ¼ 0:1 m, T �
w ¼ 300 K and

K ¼ 600 which is corresponding to Fig. 4, if jĝg�j ¼ 10�6
m, the module of the amplitude of the input temperature

fluctuation jbTT �j is about 1.8 K.

6. Conclusions

A non-intrusive active feedback control strategy is

presented in this note. The active feedback control re-

alized by using a optical sensor to detect the displace-

ment of the disturbed free surface and a actuator to

modify the cylinder wall temperature according to a

linear function of the optical sensor output. Numerical

results show that all unstable disturbance is well sup-

pressed by applying this control strategy. It is concluded

that the method is very powerful in stabilizing the fluid

layer flowing down a cylinder if the controller phase

angle and the controller gain are suitably chosen. On the

other hand, it is also shown that this control strategy can

be applied to destabilize the fluid layer by performing a

reverse feedback control.
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